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Transfer 
Learning

“Don’t be a hero”
Andrej Karpathy
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Your first 
driving 
lesson

Imagine learning to drive a car without knowing 
absolutely nothing about anything
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Randomly initialized

Deep Neural Network
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Your first 
driving 
lesson Any previous learning can be useful

Knowing how to cook is better than knowing nothing at all

We naturally reuse what we previously 
learnt to be able to solve a new task.



How 
transfer
learning 
emerged
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Image 
classification

• 1998 LeNet-5

Gradient-based learning applied to document recognition.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner



Image 
classification
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• 2012 AlexNet

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky, Ilya Sutskever and Geoffrey Hinton



1998 LeNet-5

2012 AlexNet

2014 VGG19

2014 GoogLeNet

2015 Inception-V3

2015 ResNet-56
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ImageNet 
classification 
results

12
From image-net.org
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At what 
price?

• Data available
– 1,000 images per class

• Computational cost
– Specific hardware

– Energy cost

• Human effort
– Highly skilled professionals

– Architecture design

– Hyper-parameter fine tuning
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At what 
price?

• Data available
– 1,000 images per class

• Computational cost
– Specific hardware

– Energy cost

• Human effort
– Highly skilled professionals

– Architecture design

– Hyper-parameter fine tuning

We can’t do that for every single problem!!

→ Transfer Learning to the rescue



What is 
transfer 
learning?
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What is 
transfer
learning 
about?

GENERALIZATION
Train set Test set

Train a Machine Learning Model on a 
train set with the hope that what has 
been learnt will be useful to solve a 
different task.



Formalizing 
transfer
learning 
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Pan, Sinno Jialin, and Qiang Yang. 

"A survey on transfer learning." 

IEEE Transactions on knowledge 

and data engineering (2010)
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Formalizing transfer learning 

Domain:

Task:
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Formalizing transfer learning 

Domain: 𝒟 = {𝒳, 𝑃 𝑋 }

• A feature space 𝒳

• A marginal probability distribution 𝑃 𝑋 ,𝑤ℎ𝑒𝑟𝑒 𝑋 = 𝑥1, … , 𝑥𝑛 ∈ 𝒳

Task:

≠

➔ ≠
“The Elgar Concert 

Hall at the University 

of Birmingham for 

our third conference”

➔ Bag of words

➔ Content vector
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Formalizing transfer learning 

Domain: 𝒟 = {𝒳, 𝑃 𝑋 }

• A feature space 𝒳

• A marginal probability distribution 𝑃 𝑋 ,𝑤ℎ𝑒𝑟𝑒 𝑋 = 𝑥1, … , 𝑥𝑛 ∈ 𝒳

Task:  𝒯 = {𝓎, 𝑓(·)}

• A label space 𝓎

CAT, DOG ≠ LION, WOLF

• An objective predictive function 𝑓 · ⟺ 𝑃(𝑦|𝑥)

≠

➔ ≠
“The Elgar Concert 

Hall at the University 

of Birmingham for 

our third conference”

➔ Bag of words

➔ Content vector
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Formalizing transfer learning 
Source Target

Domain: 𝒟 = {𝒳, 𝑃 𝑋 }

Task:  𝒯 = {𝓎, 𝑓(·)}
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Formalizing transfer learning 
Source Target

Domain: 𝒟 = {𝒳, 𝑃 𝑋 }

• A feature space 𝒳
– The Same (different)

• A marginal probability distribution 𝑃 𝑋
– Different

– Similar

Task:  𝒯 = {𝓎, 𝑓(·)}

➔ ➔
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Formalizing transfer learning 
Source Target

Domain: 𝒟 = {𝒳, 𝑃 𝑋 }

• A feature space 𝒳
– The Same (different)

• A marginal probability distribution 𝑃 𝑋
– Different

– Similar

Task:  𝒯 = {𝓎, 𝑓(·)}

• A label space 𝓎
– Different {CAT, DOG} {LION, WOLF}

– The same {FELINE, CANINE} {FELINE, CANINE}

• An objective predictive function           𝒇𝑺 · 𝒇𝑻 ·
– Different (but similar?)

➔ ➔
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What is 
transfer
learning 
about?

Train set

Test set
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Formalizing 
transfer
learning

Source Target

𝒇𝑺 · 𝒇𝑻 ·

𝒇𝑺 · = 𝒇𝑻 · = 

• Are they similar?

• Can we just use 𝒇𝑺 · to approximate 𝒇𝑻 · ?

• Can we reuse part of it?



Representation 
learning

48
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Deep Neural 
Networks are 
representation
learning 
techniques

• Support Vector Machine (SVM) is just a 
classifier (a very good one).

• SVM find the best boundary separating 
the data instances into different classes in 
a given feature space.
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• Support Vector Machine (SVM) is just a 
classifier (a very good one).

• SVM find the best boundary separating 
the data instances into different classes in 
a given feature space.
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Deep Neural 
Networks are 
representation
learning 
techniques

• SVMs using the kernel trick can 
overcome the linear limitation through an 
implicit mapping to a higher dimensional 
feature space
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Deep Neural Networks are 
representation learning techniques

Linear

Classifier

Intermediate 

representations

OutputInput
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DNNs 
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Feature extraction

Linear

Classifier

Intermediate 

representations

OutputInput

Pre-trained CNN, frozen weights
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Feature extraction

Intermediate 

representations

Input
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Feature extraction

Intermediate 

representations

Input

S

V

M

Target 

Task

Labels
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Simple solutions

• DNN last layer features + SVM
(Feature extraction)
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Simple solutions

• DNN last layer features + SVM
(Feature extraction)

We need: Similar task and domain
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DNNs 
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Linear
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Intermediate 
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OutputInput
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Fine tuning

Linear

Classifier

Intermediate 

representations

OutputInput

Source 

Task

What if the tasks 

are quite different?
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Fine tuning

Intermediate 

representations

Input

Features learned 

for the Source 

Task
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Fine tuning

Intermediate 

representations

Input

Features learned 

for the Source 

Task

Can we make 

them better?
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Fine tuning

Intermediate 

representations

Input

D

N

N

Target 

Task

Labels

D

N

N
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Fine tuning

Intermediate 

representations

Input

D

N

N

Target 

Task

Labels

D

N

N

Error back-propagation

• Difficult to control how much do we re-train.

→ Reduced learning rate (1/10)

→ Early stopping

→ Alternate source/target sampling
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Simple solutions

• DNN last layer features + SVM
(Feature extraction)

We need: Similar task and domain

• Add one or several NN layers +

Fine-tuning pre-trained layers



79

Simple solutions

• DNN last layer features + SVM
(Feature extraction)

We need: Similar task and domain

• Add one or several NN layers +

Fine-tuning pre-trained layers
We need: Enough data
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Beyond the last layer

Linear

Classifier

Intermediate 

representations

OutputInput
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Knowledge inside DNN

Convolutional 

filter
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Knowledge inside DNN

Image width

Image 

height

# Filters

Depth

Spatial

Average

Pooling
fi

fi
fi

f1
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Conv3_3 FC7
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Knowledge inside DNN

Spatial

Average

Pooling

Conv3_3 FC7
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Knowledge inside DNN
Conv3_3 FC7

Task

Labels

Input

Domain More 

influenced by 

domain

More 

influenced by 

task
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Knowledge inside DNN
Conv3_3 FC7

Task

Labels

Input

Domain More 

influenced by 

domain

Simple 

features

More 

influenced by 

task

Complex 

features

Visualizations from: Yosinski, Jason, et al. "Understanding neural networks through deep visualization." 

arXiv preprint arXiv:1506.06579 (2015).
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Fine tuning inside DNN?

Fine-tuning

Conv3_3 FC7
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Labels

Input

Domain
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Feature extraction inside DNN?
Conv3_3 FC7

Task
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Input

Domain

Feature extraction

VGG16 dim: 12,416 
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Feature extraction inside DNN?
Conv3_3 FC7

Task

Labels

Input

Domain

Feature extraction Different range 

of values

VGG16 dim: 12,416 



101

Feature behavior in Transfer Learning
Conv3_3 FC7

0 50 100 150 200 250 300 350
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Standardization: features in same range

0 50 100 150 200 250 300 350

L
2
 n

o
rm

Typically, it is used 

a L2-normalization

0,00 0,13 0,27 0,40 0,54 0,67 0,80 0,94
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Typically, it is used 

a L2-normalization

0,00 0,13 0,27 0,40 0,54 0,67 0,80 0,94
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Standardization: features in context
Conv3_3 FC7

• Distinct feature behavior for

a subset of data wrt rest
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Stardardization: features in context

CUB-200 - birds

Garcia-Gasulla et al. 

On the behavior of 

convolutional nets for

feature extraction. 2017
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Curse of dimensionality
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Curse of dimensionality
Conv3_3 FC7

Task

Labels

Input

Domain

VGG16 dim: 12,416 

PCA

• Unsupervised:

Only takes into account 

the domain
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Curse of dimensionality
Conv3_3 FC7

Task

Labels

Input

Domain

VGG16 dim: 12,416 

Supervised Feature Selection

?
• High computational cost!
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Curse of dimensionality
Conv3_3 FC7

Task

Labels

Input

Domain

VGG16 dim: 12,416 

• Which is the real problem?

• Too many features?

• Too few images?   A requirement
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Curse of dimensionality
Conv3_3 FC7

Task

Labels

Input

Domain

VGG16 dim: 12,416 

• Which is the real problem?

• Too many features?

• Too much information!

• Too few images?
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Meaningful discretization
Conv3_3 FC7

Task

Labels

Input

Domain

FC7

Real

values

1 -1  0  1  1  0  0  0  1 -1  0  1  1  0  0  0  1 -1  0  1  1  0  0  0  1 -1  0  1  1  0  0  0  1  0  0  0  1 -1  0  1  1  0  0  0  1 -1  0  1 1

Quantitization to {-1,0,1} based on

feature values

Conv3_3

Discrete

values
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Full-Network 
Embedding 
Recipe

1. Spatial Average Pooling

2. Standardisation

3. Discretization

Garcia-Gasulla, et al. 

An out-of-the-box full-

network embedding for

convolutional neural 

networks. 2018.
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Full Network embedding
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FNE - Results: Similar source task

Network pre-trained on Places2 for mit67 and on ImageNet for the rest.
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Network pre-trained on Places2 for mit67 and on ImageNet for the rest.
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FNE - Results: Dissimilar source task

Network pre-trained on ImageNet for mit67 and on Places2 for the rest.
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FNE - Results: Dissimilar source task

Network pre-trained on ImageNet for mit67 and on Places2 for the rest.
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FNE - Results: Dissimilar source task

Network pre-trained on ImageNet for mit67 and on Places2 for the rest.

+3.3 +11.9 +15.4 +17.5 +8.0 +9.3 +10.6
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Simple solutions

• DNN last layer features + SVM
(Feature extraction)

We need: Similar task and domain

• Add one or several NN layers +

Fine-tuning pre-trained layers
We need: Enough data

• Full Network Embedding
– Robust to different task and domain

– Works with little data



Practical
tips

130
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Practical
tips

Fine-tuning

• Whenever possible don’t start from scratch.

• External data can help prevent overfitting (even from a 
different problem).

• Begin freezing as much as possible and proceed with 

caution (particularly for large models)
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Practical
tips

Feature

extraction

• Easy baseline for every problem.

• ImageNet, a model to pre-train them all. (but not always)

• Always normalize features.

• If source and target task are closely related: 

 Last two layers are your best chance.

• If source and target task are quite different:

 Try everything

 Use FNE



139

Useful
References • Zhe Xu, Shaoli Huang, Ya Zhang, and Dacheng Tao. Augmenting

strong supervision using webdata for fine-grained categorization. 

2015.

• Steve Branson, Grant Van Horn, Serge Belongie, and Pietro 

Perona. Bird species categorizationusing pose normalized deep

convolutional nets. 2014.

• Chang Liu, Yu Cao, Yan Luo, Guanling Chen, Vinod Vokkarane, and 

Yunsheng Ma.  Deep-food: Deep learning-based food image

recognition for computer-aided dietary assessment. 2016.

Don’t start training 

from scratch
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Useful
References • Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How

transferable are features in deep neural networks? 2014.

• Dario Garcia-Gasulla, Ferran Parés, Armand Vilalta, Jonatan

Moreno, Eduard Ayguadé, Jesús Labarta, Ulises Cortés, and 

Toyotaro Suzumura.  On the behavior of convolutional nets for

feature extraction. 2017
Transfer learning 101
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Useful
References

• Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, Atsuto

Maki, and Stefan Carlsson. Factors of transferability for a generic

convnet. 2016.

• Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and 

Stefan Carlsson. CNN features off-the-shelf: an astounding baseline

for recognition. 2014.

• Yunchao Gong, Liwei Wang, Ruiqi Guo, and Svetlana Lazebnik. 

Multi-scale orderless pooling of deep convolutional activation

features. 2014.

• Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning

Zhang, Eric Tzeng, and Trevor Darrell. Decaf: A deep convolutional

activation feature for generic visual recognition. 2014.

• Arsalan Mousavian and Jana Kosecka. Deep convolutional features

for image based retrieval and scene categorization. 2015.

Basic feature

extraction
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Useful
References • Garcia-Gasulla, Dario, Armand Vilalta, Ferran Parés, Eduard

Ayguadé, Jesus Labarta, Ulises Cortés, and Toyotaro Suzumura. An

out-of-the-box full-network embedding for convolutional neural 

networks. 2018.

• Vilalta, Armand, Dario Garcia-Gasulla, Ferran Parés, Jonathan 

Moreno, Eduard Ayguadé Jesús Labarta, Ulises Cortés, and 

Toyotaro Suzumura. Full-Network Embedding in a Multimodal 

Embedding Pipeline. 2017.

Multi-layer feature

extraction
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Useful
References • Weifeng Ge and Yizhou Yu.  Borrowing treasures from the wealthy:  

Deep transfer learning through selective joint fine-tuning. 2017.

• Marcel Simon and Erik Rodner.  Neural activation constellations:  

Unsupervised part model discovery with convolutional networks. 

2015.
Advanced fine tuning 

to solve small tasks



CTE-Power9
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Hands on session

16:00

2 GPUs per account

52 computing nodes. Each one:

• 2 x IBM Power9 8335-GTH @ 

2.4GHz(total 160 threads)

• 512GB of main memory

• 4 x GPU NVIDIA V100 (Volta) 

with 16GB each

Available through PRACE and RES



dario.garcia@bsc.es

armand.vilalta@bsc.es
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